Search results
Results From The WOW.Com Content Network
The minimal chunk size (page) for a read operation is much smaller than the minimal chunk size (block) for a write/erase operation, resulting in an undesirable phenomenon called write amplification that limits the random write performance and write endurance of a flash-based storage device. Some solid-state storage devices use RAM and a battery ...
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
The term solid-state became popular at the beginning of the semiconductor era in the 1960s to distinguish this new technology. A semiconductor device works by controlling an electric current consisting of electrons or holes moving within a solid crystalline piece of semiconducting material such as silicon, while the thermionic vacuum tubes it replaced worked by controlling a current of ...
Outlines of some packaged semiconductor devices. A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators.
A solid-state electrolyte (SSE) is a solid ionic conductor and electron-insulating material and it is the characteristic component of the solid-state battery. It is useful for applications in electrical energy storage (EES) in substitution of the liquid electrolytes found in particular in lithium-ion battery .
Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. [4] Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance that is dissolved. [5] [6] Electrically, such a solution is neutral.
Solid-state ionic devices, such as solid oxide fuel cells, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes. [ 1 ] The field of solid-state ionics was first developed in Europe, starting with the work of Michael Faraday on solid electrolytes Ag 2 S and PbF 2 in 1834.
The state or phase of a given set of matter can change depending on pressure and temperature conditions, transitioning to other phases as these conditions change to favor their existence; for example, solid transitions to liquid with an increase in temperature. Near absolute zero, a substance exists as a solid.