When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Oomycete - Wikipedia

    en.wikipedia.org/wiki/Oomycete

    For instance, the cell walls of oomycetes are composed of cellulose rather than chitin [12] and generally do not have septations. Also, in the vegetative state they have diploid nuclei, whereas fungi have haploid nuclei. Most oomycetes produce self-motile zoospores with two flagella. One flagellum has a "whiplash" morphology, and the other a ...

  3. Chitin-glucan complex - Wikipedia

    en.wikipedia.org/wiki/Chitin-glucan_complex

    Chitin-glucan complex (CGC) is a copolymer (polysaccharide) that makes up fungal cell walls, consisting of covalently-bonded chitin and branched 1,3/1,6-ß-D-glucan. CGCs are alkaline - insoluble . Different species of fungi have different structural compositions of chitin and β-glucan making up the CGCs in their cell walls. [ 1 ]

  4. Chytridiomycota - Wikipedia

    en.wikipedia.org/wiki/Chytridiomycota

    These ubiquitous and cosmopolitan organisms are responsible for decomposition of refractory materials, such as pollen, cellulose, chitin, and keratin. [ 7 ] [ 4 ] There are also chytrids that live and grow on pollen by attaching threadlike structures, called rhizoids, onto the pollen grains. [ 34 ]

  5. Cell wall - Wikipedia

    en.wikipedia.org/wiki/Cell_wall

    Unlike fungi, oomycetes typically possess cell walls of cellulose and glucans rather than chitin, although some genera (such as Achlya and Saprolegnia) do have chitin in their walls. [34] The fraction of cellulose in the walls is no more than 4 to 20%, far less than the fraction of glucans. [34]

  6. Fungus - Wikipedia

    en.wikipedia.org/wiki/Fungus

    The fungal cell wall is made of a chitin-glucan complex; while glucans are also found in plants and chitin in the exoskeleton of arthropods, [36] fungi are the only organisms that combine these two structural molecules in their cell wall. Unlike those of plants and oomycetes, fungal cell walls do not contain cellulose. [37] [38]

  7. Chitin - Wikipedia

    en.wikipedia.org/wiki/Chitin

    Chitin is the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chitin are produced each year in the biosphere. [1] It is a primary component of cell walls in fungi (especially filamentous and mushroom-forming fungi), the exoskeletons of arthropods such as crustaceans and insects, the radulae ...

  8. Polysaccharide - Wikipedia

    en.wikipedia.org/wiki/Polysaccharide

    If chitin is detected, they then produce enzymes to digest it by cleaving the glycosidic bonds in order to convert it to simple sugars and ammonia. [31] Chemically, chitin is closely related to chitosan (a more water-soluble derivative of chitin). It is also closely related to cellulose in that it is a long unbranched chain of glucose ...

  9. Hypha - Wikipedia

    en.wikipedia.org/wiki/Hypha

    The major structural polymer in fungal cell walls is typically chitin, in contrast to plants and oomycetes that have cellulosic cell walls. Some fungi have aseptate hyphae, meaning their hyphae are not partitioned by septa. Hyphae have an average diameter of 4–6 μm. [2]