Search results
Results From The WOW.Com Content Network
The midsegment of a trapezoid is one of the two bimedians (the other bimedian divides the trapezoid into equal areas). The height (or altitude) is the perpendicular distance between the bases. In the case that the two bases have different lengths ( a ≠ b ), the height of a trapezoid h can be determined by the length of its four sides using ...
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.
For an example, any parallelogram can be subdivided into a trapezoid and a right triangle, as shown in figure to the left. If the triangle is moved to the other side of the trapezoid, then the resulting figure is a rectangle. It follows that the area of the parallelogram is the same as the area of the rectangle: [2] A = bh (parallelogram).
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral.