Search results
Results From The WOW.Com Content Network
The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.
These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2).
Composition of rotations sums their angles modulo 1 turn, which implies that all two-dimensional rotations about the same point commute. Rotations about different points, in general, do not commute. Any two-dimensional direct motion is either a translation or a rotation; see Euclidean plane isometry for details. Euler rotations of the Earth.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Then, any orthogonal matrix is either a rotation or an improper rotation. A general orthogonal matrix has only one real eigenvalue, either +1 or −1. When it is +1 the matrix is a rotation. When −1, the matrix is an improper rotation. If R has more than one invariant vector then φ = 0 and R = I. Any vector is an invariant vector of I.
In numerical linear algebra, a Jacobi rotation is a rotation, Q kℓ, of a 2-dimensional linear subspace of an n-dimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix, A, when applied as a similarity transformation:
An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.
A Givens rotation acts on a two-dimensional (planar) subspace spanned by two coordinate axes, rotating by a chosen angle. It is typically used to zero a single subdiagonal entry. Any rotation matrix of size n × n can be constructed as a product of at most n(n − 1) / 2 such rotations.