When.com Web Search

  1. Ad

    related to: cells that replicate dna and chromosomes make

Search results

  1. Results From The WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. Cell cycle - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle

    The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.

  4. Mitosis - Wikipedia

    en.wikipedia.org/wiki/Mitosis

    This results in polyploid cells or, if the chromosomes duplicates repeatedly, polytene chromosomes. [68] [70] Endoreduplication is found in many species and appears to be a normal part of development. [70] Endomitosis is a variant of endoreduplication in which cells replicate their chromosomes during S phase and enter, but prematurely terminate ...

  5. Replication timing - Wikipedia

    en.wikipedia.org/wiki/Replication_timing

    During the S-phase of each cell cycle (Figure 1), all of the DNA in a cell is duplicated in order to provide one copy to each of the daughter cells after the next cell division. The process of duplicating DNA is called DNA replication, and it takes place by first unwinding the duplex DNA molecule, starting at many locations called DNA ...

  6. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    Eukaryotic DNA replication requires precise coordination of all DNA polymerases and associated proteins to replicate the entire genome each time a cell divides. This process is achieved through a series of steps of protein assemblies at origins of replication, mainly focusing the regulation of DNA replication on the association of the MCM ...

  7. Origin of replication - Wikipedia

    en.wikipedia.org/wiki/Origin_of_replication

    The large genome sizes of eukaryotic cells, which range from 12 Mbp in S. cerevisiae to more than 100 Gbp in some plants, necessitates that DNA replication starts at several hundred (in budding yeast) to tens of thousands (in humans) origins to complete DNA replication of all chromosomes during each cell cycle.

  8. S phase - Wikipedia

    en.wikipedia.org/wiki/S_phase

    All eukaryotes possess many more replication origins than strictly needed during one cycle of DNA replication. [5] Redundant origins may increase the flexibility of DNA replication, allowing cells to control the rate of DNA synthesis and respond to replication stress. [5]

  9. Cell division - Wikipedia

    en.wikipedia.org/wiki/Cell_division

    The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3. Cell division is the process by which a parent cell divides into two daughter cells. [1]