Search results
Results From The WOW.Com Content Network
In the central nervous system (CNS), glia suppress repair. Glial cells known as astrocytes enlarge and proliferate to form a scar and produce inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the peripheral nervous system (PNS), glial cells known as Schwann cells (or also as neuri-lemmocytes) promote repair. After ...
Nervous system repair: Upon injury to nerve cells within the central nervous system, astrocytes fill up the space to form a glial scar, and may contribute to neural repair. The role of astrocytes in CNS regeneration following injury is not well understood though.
The two types of aquaporins expressed in the CNS are aquaporin-1, which is expressed by specialized epithelial cells of the choroid plexus, and aquaporin-4 (AQP4), which is expressed by astrocytes. [12] [13] Aquaporin-4 expression in astrocytes is highly polarized to the endfoot processes ensheathing the cerebral vasculature. Up to 50% of the ...
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...
Grey matter is distinguished from white matter in that it contains numerous cell bodies and relatively few myelinated axons, while white matter contains relatively few cell bodies and is composed chiefly of long-range myelinated axons. [1] The colour difference arises mainly from the whiteness of myelin. In living tissue, grey matter actually ...
Gliogenesis results in the formation of non-neuronal glia populations from neuronal cells. In this capacity, glial cells provide multiple functions to both the central nervous system (CNS) and the peripheral nervous system (PNS). Subsequent differentiation of glial cell populations
The central nervous system (CNS) is derived from the ectoderm—the outermost tissue layer of the embryo. In the third week of human embryonic development the neuroectoderm appears and forms the neural plate along the dorsal side of the embryo. The neural plate is the source of the majority of neurons and glial cells of the CNS.
Four types of neuroglia found in the CNS are astrocytes, microglial cells, ependymal cells, and oligodendrocytes. Two types of neuroglia found in the PNS are satellite glial cells and Schwann cells. In the central nervous system (CNS), the tissue types found are grey matter and white matter. The tissue is categorized by its neuronal and ...