When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elementary Number Theory, Group Theory and Ramanujan Graphs

    en.wikipedia.org/wiki/Elementary_Number_Theory...

    Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...

  3. Ramanujan graph - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_graph

    If is a Ramanujan graph, then is a bipartite Ramanujan graph, so the existence of Ramanujan graphs is stronger. As observed by Toshikazu Sunada , a regular graph is Ramanujan if and only if its Ihara zeta function satisfies an analog of the Riemann hypothesis .

  4. Forbidden subgraph problem - Wikipedia

    en.wikipedia.org/wiki/Forbidden_subgraph_problem

    In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges ⁡ (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .

  5. Forbidden graph characterization - Wikipedia

    en.wikipedia.org/wiki/Forbidden_graph...

    Forbidden graph characterizations may be used in algorithms for testing whether a graph belongs to a given family. In many cases, it is possible to test in polynomial time whether a given graph contains any of the members of the obstruction set, and therefore whether it belongs to the family defined by that obstruction set.

  6. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    The weighted graph Laplacian: () is a well-studied operator in the graph setting. Mimicking the relationship div ⁡ ( ∇ f ) = Δ f {\displaystyle \operatorname {div} (\nabla f)=\Delta f} of the Laplace operator in the continuum setting, the weighted graph Laplacian can be derived for any vertex x i ∈ V {\displaystyle x_{i}\in V} as:

  7. De Bruijn–Erdős theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn–Erdős_theorem...

    The induced subgraphs of this graph are called unit distance graphs. A seven-vertex unit distance graph, the Moser spindle, requires four colors; in 2018, much larger unit distance graphs were found that require five colors. [6] The whole infinite graph has a known coloring with seven colors based on a hexagonal tiling of the plane.

  8. Squaregraph - Wikipedia

    en.wikipedia.org/wiki/Squaregraph

    The characterization of squaregraphs in terms of distance from a root and links of vertices can be used together with breadth first search as part of a linear time algorithm for testing whether a given graph is a squaregraph, without any need to use the more complex linear-time algorithms for planarity testing of arbitrary graphs.

  9. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.