Ads
related to: polynomials class 9 practice sheet
Search results
Results From The WOW.Com Content Network
A function f : A n → A 1 is said to be polynomial (or regular) if it can be written as a polynomial, that is, if there is a polynomial p in k[x 1,...,x n] such that f(M) = p(t 1,...,t n) for every point M with coordinates (t 1,...,t n) in A n. The property of a function to be polynomial (or regular) does not depend on the choice of a ...
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
PARI/GP is a computer algebra system that facilitates number-theory computation. Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series, algebraic numbers, and transcendental functions. [3]
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
A visual memory tool can replace the FOIL mnemonic for a pair of polynomials with any number of terms. Make a table with the terms of the first polynomial on the left edge and the terms of the second on the top edge, then fill in the table with products of multiplication. The table equivalent to the FOIL rule looks like this:
The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases.
An arbitrary polynomial of degree N can be written in terms of the Chebyshev polynomials of the first kind. [9] Such a polynomial p(x) is of the form: = = (). Polynomials in Chebyshev form can be evaluated using the Clenshaw algorithm.
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.