When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(signal_processing)

    A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. [ A ] A sampler is a subsystem or operation that extracts samples from a continuous signal .

  3. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).

  4. Downsampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Downsampling_(signal...

    where the h[•] sequence is the impulse response, and K is its length. x [•] represents the input sequence being downsampled. In a general purpose processor, after computing y [ n ], the easiest way to compute y [ n +1] is to advance the starting index in the x [•] array by M , and recompute the dot product.

  5. Upsampling - Wikipedia

    en.wikipedia.org/wiki/Upsampling

    Impulse response coefficients taken at intervals of form a subsequence, and there are such subsequences (called phases) multiplexed together. Each of L {\displaystyle L} phases of the impulse response is filtering the same sequential values of the x {\displaystyle x} data stream and producing one of L {\displaystyle L} sequential output values.

  6. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  7. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  8. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. [1]

  9. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.