When.com Web Search

  1. Ad

    related to: square root property solver calculator matrix

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    A matrix B is said to be a square root of A if the matrix product BB is equal to A. [1] Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the ...

  3. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    An alternative way to eliminate taking square roots in the decomposition is to compute the LDL decomposition =, then solving = for y, and finally solving =. For linear systems that can be put into symmetric form, the Cholesky decomposition (or its LDL variant) is the method of choice, for superior efficiency and numerical stability.

  4. Square root of a 2 by 2 matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix

    Square roots that are not the all-zeros matrix come in pairs: if R is a square root of M, then −R is also a square root of M, since (−R)(−R) = (−1)(−1)(RR) = R 2 = M. A 2×2 matrix with two distinct nonzero eigenvalues has four square roots. A positive-definite matrix has precisely one positive-definite square root.

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero

  6. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose † =). If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A .

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Since singular values of a real matrix are the square roots of the eigenvalues of the symmetric matrix = it can also be used for the calculation of these values. For this case, the method is modified in such a way that S must not be explicitly calculated which reduces the danger of round-off errors .

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.