Search results
Results From The WOW.Com Content Network
Max-sum MSSP is a special case of MKP in which the value of each item equals its weight. The knapsack problem is a special case of MKP in which m=1. The subset-sum problem is a special case of MKP in which both the value of each item equals its weight, and m=1. The MKP has a Polynomial-time approximation scheme. [6]
In the th step, it computes the subarray with the largest sum ending at ; this sum is maintained in variable current_sum. [ note 3 ] Moreover, it computes the subarray with the largest sum anywhere in A [ 1 … j ] {\displaystyle A[1\ldots j]} , maintained in variable best_sum , [ note 4 ] and easily obtained as the maximum of all values of ...
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
Fermat's Last Theorem states that for powers greater than 2, the equation a k + b k = c k has no solutions in non-zero integers a, b, c. Extending the number of terms on either or both sides, and allowing for higher powers than 2, led to Leonhard Euler to propose in 1769 that for all integers n and k greater than 1, if the sum of n k th powers ...
In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem.It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k:
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.
Analogously to the case of the sum of a series, if α = 0, the result is convergence of the improper integral. In the case α = 1 , (C, 1) convergence is equivalent to the existence of the limit lim λ → ∞ 1 λ ∫ 0 λ ∫ 0 x f ( y ) d y d x {\displaystyle \lim _{\lambda \to \infty }{\frac {1}{\lambda }}\int _{0}^{\lambda }\int _{0}^{x}f ...
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...