Search results
Results From The WOW.Com Content Network
A basic block is the simplest building block studied in the original ResNet. [1] This block consists of two sequential 3x3 convolutional layers and a residual connection. The input and output dimensions of both layers are equal. Block diagram of ResNet (2015). It shows a ResNet block with and without the 1x1 convolution.
Kumar suggested that the distribution of initial weights should vary according to activation function used and proposed to initialize the weights in networks with the logistic activation function using a Gaussian distribution with a zero mean and a standard deviation of 3.6/sqrt(N), where N is the number of neurons in a layer.
As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.
The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.
A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:
The code name "Roslyn" was first written by Eric Lippert (a former Microsoft engineer [5]) in a post [6] that he published in 2010 to hire developers for a new project. He first said that the origin of the name was because of Roslyn, Washington, but later in the post he speaks ironically about the "northern exposure" of its office; the city of Roslyn was one of the places where the television ...
Suppose that residual r is positive. This could result because the previous x estimate was low, the previous v was low, or some combination of the two. The alpha beta filter takes selected alpha and beta constants (from which the filter gets its name), uses alpha times the deviation r to correct the position estimate, and uses beta times the ...
Both minimize the 2-norm of the residual and do the same calculations in exact arithmetic when the matrix is symmetric. MINRES is a short-recurrence method with a constant memory requirement, whereas GMRES requires storing the whole Krylov space, so its memory requirement is roughly proportional to the number of iterations.