Ads
related to: exponents and powers class 7 mcq worksheets
Search results
Results From The WOW.Com Content Network
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1, 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3, 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not. The sequence of prime powers begins:
Toggle Power series subsection. 2.1 Low-order polylogarithms. 2.2 Exponential function. 2.3 Trigonometric, inverse trigonometric, hyperbolic, ...
All composite divisors of prime-exponent Mersenne numbers are strong pseudoprimes to the base 2. With the exception of 1, a Mersenne number cannot be a perfect power. That is, and in accordance with Mihăilescu's theorem, the equation 2 m − 1 = n k has no solutions where m, n, and k are integers with m > 1 and k > 1.
In general, finding the optimal addition chain for a given exponent is a hard problem, for which no efficient algorithms are known, so optimal chains are typically used for small exponents only (e.g. in compilers where the chains for small powers have been pre-tabulated).