Search results
Results From The WOW.Com Content Network
An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.
Cluster analysis has been used to cluster stocks into sectors. [64] Petroleum geology Cluster analysis is used to reconstruct missing bottom hole core data or missing log curves in order to evaluate reservoir properties. Geochemistry The clustering of chemical properties in different sample locations.
For this reason, cluster sampling requires a larger sample than SRS to achieve the same level of accuracy – but cost savings from clustering might still make this a cheaper option. Cluster sampling is commonly implemented as multistage sampling. This is a complex form of cluster sampling in which two or more levels of units are embedded one ...
In statistics, multistage sampling is the taking of samples in stages using smaller and smaller sampling units at each stage. [1] Multistage sampling can be a complex form of cluster sampling because it is a type of sampling which involves dividing the population into groups (or clusters). Then, one or more clusters are chosen at random and ...
For example, in cluster sampling we can use a two stage sampling in which we sample each cluster (which may be of different sizes) with equal probability, and then sample from each cluster at the second stage using SRS with a fixed proportion (e.g. sample half of the cluster, the whole cluster, etc.).
Because a cluster-based frame contains less information about the population, it may place constraints on the sample design, possibly requiring the use of less efficient sampling methods and/or making it harder to interpret the resulting data. Statistical theory tells us about the uncertainties in extrapolating from a sample to the frame.
[4]: 250 So, for example, if we have 3 clusters with 10, 20 and 30 units each, then the chance of selecting the first cluster will be 1/6, the second would be 1/3, and the third cluster will be 1/2. The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with ...
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]