Search results
Results From The WOW.Com Content Network
Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system. Most zones in UTM span 6 degrees of longitude, and each has a designated central meridian ...
UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. The first part of an MGRS coordinate is the grid-zone designation. The 6° wide UTM zones, numbered 1–60, are intersected by latitude bands that are normally 8° high, lettered C–X (omitting I and O).
[20] [21] The six-degree zone width of UTM strikes a balance between the frequency of these discontinuities versus distortion of scale, which would increase unacceptably if the zones were made wider. (UTM further uses a 0.9996 scale factor at the central meridian, growing to 1.0000 at two meridians offset from the center, and increasing toward ...
For example, in UTM, the origin of each northern zone is a point on the equator 500 km west of the central meridian of the zone (the edge of the zone itself is just under 400 km to the west). This has the desirable effect of making all coordinates within the zone positive values, being east and north of the origin.
The projection coordinates resulting from the various developments of the ellipsoidal transverse Mercator are Cartesian coordinates such that the central meridian corresponds to the x axis and the equator corresponds to the y axis. Both x and y are defined for all values of λ and ϕ. The projection does not define a grid: the grid is an ...
A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space.
This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, [5] in national (Great Britain, [6] Ireland [7] and many others) and also international [8] mapping systems, including the Universal Transverse Mercator coordinate system (UTM).
The U.S. National Geodetic Survey's "State Plane Coordinate System of 1983" uses the Lambert conformal conic projection to define the grid-coordinate systems used in several states, primarily those that are elongated west to east such as Tennessee.