Search results
Results From The WOW.Com Content Network
Molecular mimicry is thus occurring between two recognized peptides that have similar antigenic surfaces in the absence of primary sequence homology. For example, specific single amino acid residues such as cysteine (creates di-sulfide bonds), arginine or lysine (form multiple hydrogen bonds), could be essential for T cell cross-reactivity.
Chemical mimicry (or molecular mimicry) is a type of biological mimicry involving the use of chemicals to dupe an operator. A chemical mimic dupes an operator (e.g. a predator) by showing an adaptive chemical resemblance to an object of its environment and as a consequence receives selective advantage. [ 1 ]
In chemistry, the molar absorption coefficient or molar attenuation coefficient (ε) [1] is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species.
Chemical similarity (or molecular similarity) refers to the similarity of chemical elements, molecules or chemical compounds with respect to either structural or functional qualities, i.e. the effect that the chemical compound has on reaction partners in inorganic or biological settings.
Often, most of the amino acid polymer is indirectly involved with the enzymes function, perhaps providing ancillary structure or connectivity, indirect activity regulation, or molecular identification of the enzyme. As a result, most enzymes are large molecules weighing many kilodaltons.
Mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect from predators. [11] Mimicry systems have three basic roles: a mimic, a model, and a dupe.
Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. [1] The methods are used in the fields of computational chemistry, drug design, computational biology and materials science to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies.
Microscale stochastic details are subsumed into a partial differential diffusion equation and that equation is used to establish the equivalence. To relax other assumptions, researchers have applied computational methods. Figure 2 is a sample computational microscale algorithm that corresponds to the macroscale model of Figure 1.