Search results
Results From The WOW.Com Content Network
Pandas is built around data structures called Series and DataFrames. Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark; Data frames in the R programming language; Frame (networking)
pandas is a BSD-licensed library providing data structures and data analysis tools for the Python programming language. Perl Data Language provides large multidimensional arrays for the Perl programming language, and utilities for image processing and graphical plotting.
Wes McKinney is an American software developer and businessman. He is the creator and "Benevolent Dictator for Life" (BDFL) of the open-source pandas package for data analysis in the Python programming language, and has also authored three versions of the reference book Python for Data Analysis.
dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
Standard examples of data-driven languages are the text-processing languages sed and AWK, [1] and the document transformation language XSLT, where the data is a sequence of lines in an input stream – these are thus also known as line-oriented languages – and pattern matching is primarily done via regular expressions or line numbers.