When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The statement that any wavefunction for the particle on a ring can be written as a superposition of energy eigenfunctions is exactly identical to the Fourier theorem about the development of any periodic function in a Fourier series. This simple model can be used to find approximate energy levels of some ring molecules, such as benzene.

  3. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle. In a non-relativistic theory, there are no antiparticles and there is no doubling, so each Feynman diagram includes only one term.

  4. The following derivation [4] makes use of the Trotter product formula, which states that for self-adjoint operators A and B (satisfying certain technical conditions), we have (+) = (/ /), even if A and B do not commute.

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  6. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by / one particle label is chosen.

  7. On shell and off shell - Wikipedia

    en.wikipedia.org/wiki/On_shell_and_off_shell

    the massenergy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...

  8. Mandelstam variables - Wikipedia

    en.wikipedia.org/wiki/Mandelstam_variables

    In this diagram, two particles come in with momenta p 1 and p 2, they interact in some fashion, and then two particles with different momentum (p 3 and p 4) leave.. In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, momentum, and angles of particles in a scattering process in a Lorentz-invariant fashion.

  9. Nilsson model - Wikipedia

    en.wikipedia.org/wiki/Nilsson_model

    Single-particle levels can be shown in a "spaghetti plot," as functions of the deformation. A large gap between energy levels at zero deformation indicates a particle number at which there is a shell closure: the traditional "magic numbers." Any such gap, at a zero or nonzero deformation, indicates that when the Fermi level is at that height ...