Search results
Results From The WOW.Com Content Network
The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac. [ 1 ]
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
The hyperbolic distribution is a continuous probability distribution characterized by the logarithm of the probability density function being a hyperbola. Thus the distribution decreases exponentially, which is more slowly than the normal distribution. It is therefore suitable to model phenomena where numerically large values are more probable ...
Another example of hyperbolic growth can be found in queueing theory: the average waiting time of randomly arriving customers grows hyperbolically as a function of the average load ratio of the server. The singularity in this case occurs when the average amount of work arriving to the server equals the server's processing capacity.
The model hyperbolic equation is the wave equation. In one spatial dimension, this is ∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 {\displaystyle {\frac {\partial ^{2}u}{\partial t^{2}}}=c^{2}{\frac {\partial ^{2}u}{\partial x^{2}}}} The equation has the property that, if u and its first time derivative are arbitrarily specified initial data on the ...
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The word "hyperbola" derives from the Greek ὑπερβολή, meaning "over-thrown" or "excessive", from which the English term hyperbole also derives. Hyperbolae were discovered by Menaechmus in his investigations of the problem of doubling the cube, but were then called sections of obtuse cones. [2]
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration . For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions .