Ads
related to: quasiconcave and quasiconvex functions calculator 2 equations times
Search results
Results From The WOW.Com Content Network
A function : defined on a convex subset of a real vector space is quasiconvex if for all , and [,] we have (+ ()) {(), ()}.In words, if is such that it is always true that a point directly between two other points does not give a higher value of the function than both of the other points do, then is quasiconvex.
Quasiconvexity is a generalisation of convexity for functions defined on matrices, to see this let and ((,),) with (,) =.The Riesz-Markov-Kakutani representation theorem states that the dual space of () can be identified with the space of signed, finite Radon measures on it.
An important special case of concavification is where the original function is a quasiconcave function. It is known that: Every concave function is quasiconcave, but the opposite is not true. Every monotone transformation of a quasiconcave function is also quasiconcave.
Every convex function is pseudoconvex, but the converse is not true. For example, the function () = + is pseudoconvex but not convex. Similarly, any pseudoconvex function is quasiconvex; but the converse is not true, since the function () = is quasiconvex but not pseudoconvex. This can be summarized schematically as:
[2] For convex functions or quasiconvex functions, the upper envelope is again convex or quasiconvex. The lower envelope is not, but can be replaced by the lower convex envelope to obtain an operation analogous to the lower envelope that maintains convexity. The upper and lower envelopes of Lipschitz functions preserve the property of being ...
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The standard tool for obtaining necessary conditions for a function to be a minimizer is the Euler–Lagrange equation. But seeking a minimizer amongst functions satisfying these may lead to false conclusions if the existence of a minimizer is not established beforehand. The functional must be bounded from below to have a minimizer. This means
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.