When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their ...

  3. Dirty data - Wikipedia

    en.wikipedia.org/wiki/Dirty_data

    Dirty data, also known as rogue data, [1] are inaccurate, incomplete or inconsistent data, especially in a computer system or database. [2]Dirty data can contain such mistakes as spelling or punctuation errors, incorrect data associated with a field, incomplete or outdated data, or even data that has been duplicated in the database.

  4. Why Most Published Research Findings Are False - Wikipedia

    en.wikipedia.org/wiki/Why_Most_Published...

    In addition to the main result, Ioannidis lists six corollaries for factors that can influence the reliability of published research. Research findings in a scientific field are less likely to be true, the smaller the studies conducted. the smaller the effect sizes. the greater the number and the lesser the selection of tested relationships.

  5. Data quality - Wikipedia

    en.wikipedia.org/wiki/Data_quality

    The Data QC process uses the information from the QA process to decide to use the data for analysis or in an application or business process. General example: if a Data QC process finds that the data contains too many errors or inconsistencies, then it prevents that data from being used for its intended process which could cause disruption.

  6. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").

  7. Misleading graph - Wikipedia

    en.wikipedia.org/wiki/Misleading_graph

    Though all three graphs share the same data, and hence the actual slope of the (x, y) data is the same, the way that the data is plotted can change the visual appearance of the angle made by the line on the graph. This is because each plot has a different scale on its vertical axis.

  8. Analysis of competing hypotheses - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_competing...

    The resulting hypotheses are converted to a dynamic Bayesian network and value of information analysis is employed to isolate assumptions implicit in the evaluation of paths in, or conclusions of, particular hypotheses. As evidence in the form of observations of states or assumptions is observed, they can become the subject of separate validation.

  9. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]