Search results
Results From The WOW.Com Content Network
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
In a confirmatory or primary screen with replicates, for the i-th test compound with replicates, we calculate the paired difference between the measured value (usually on the log scale) of the compound and the median value of a negative control in a plate, then obtain the mean ¯ and variance of the paired difference across replicates.
To calculate the standardized statistic = (¯), we need to either know or have an approximate value for σ 2, from which we can calculate =. In some applications, σ 2 is known, but this is uncommon. If the sample size is moderate or large, we can substitute the sample variance for σ 2 , giving a plug-in test.
Let X be a random variable with a probability distribution P and mean value = [] (i.e. the first raw moment or moment about zero), the operator E denoting the expected value of X. Then the standardized moment of degree k is μ k σ k , {\displaystyle {\frac {\mu _{k}}{\sigma ^{k}}},} [ 2 ] that is, the ratio of the k th moment about the mean
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).
In educational statistics, a normal curve equivalent (NCE), developed for the United States Department of Education by the RMC Research Corporation, [1] is a way of normalizing scores received on a test into a 0-100 scale similar to a percentile rank, but preserving the valuable equal-interval properties of a z-score.