When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    This might seem to be a much stronger result than Liouville's theorem, but it is actually an easy corollary. If the image of f {\displaystyle f} is not dense, then there is a complex number w {\displaystyle w} and a real number r > 0 {\displaystyle r>0} such that the open disk centered at w {\displaystyle w} with radius r {\displaystyle r} has ...

  3. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.

  4. Liouville's theorem - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem

    In Hamiltonian mechanics, see Liouville's theorem (Hamiltonian) and Liouville–Arnold theorem; In linear differential equations, see Liouville's formula; In transcendence theory and diophantine approximations, the theorem that any Liouville number is transcendental; In differential algebra, see Liouville's theorem (differential algebra)

  5. Liouville's equation - Wikipedia

    en.wikipedia.org/wiki/Liouville's_equation

    For Liouville's equation in Euclidean space, see Liouville–Bratu–Gelfand equation. In differential geometry, Liouville's equation, named after Joseph Liouville, [1] [2] is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f 2 (dx 2 + dy 2) on a surface of constant Gaussian curvature K: ⁡ =, where ...

  6. Cauchy's estimate - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_estimate

    As a corollary, for example, we obtain Liouville's theorem, which says a bounded entire function is constant (indeed, let in the estimate.) Slightly more generally, if f {\displaystyle f} is an entire function bounded by A + B | z | k {\displaystyle A+B|z|^{k}} for some constants A , B {\displaystyle A,B} and some integer k > 0 {\displaystyle k ...

  7. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    Liouville’s theorem is essentially statistical in nature, and it refers to the evolution in time of an ensemble of mechanical systems of identical properties but with different initial conditions. Each system is represented by a single point in phase space, and the theorem states that the average density of points in phase space is constant ...

  8. Liouville–Arnold theorem - Wikipedia

    en.wikipedia.org/wiki/Liouville–Arnold_theorem

    In dynamical systems theory, the Liouville–Arnold theorem states that if, in a Hamiltonian dynamical system with n degrees of freedom, there are also n independent, Poisson commuting first integrals of motion, and the level sets of all first integrals are compact, then there exists a canonical transformation to action-angle coordinates in which the transformed Hamiltonian is dependent only ...

  9. Liouville's formula - Wikipedia

    en.wikipedia.org/wiki/Liouville's_formula

    In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system.