Ad
related to: gradient divergence and curl calculator with solution set
Search results
Results From The WOW.Com Content Network
D: divergence, C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do ...
The curl of the gradient of any scalar field φ is always the zero vector field = which follows from the antisymmetry in the definition of the curl, and the symmetry of second derivatives. The divergence of the curl of any vector field is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}
Del is a very convenient mathematical notation for those three operations (gradient, divergence, and curl) that makes many equations easier to write and remember. The del symbol (or nabla) can be formally defined as a vector operator whose components are the corresponding partial derivative operators.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
These scaling functions h i are used to calculate differential operators in the new coordinates, e.g., the gradient, the Laplacian, the divergence and the curl. A simple method for generating orthogonal coordinates systems in two dimensions is by a conformal mapping of a standard two-dimensional grid of Cartesian coordinates (x, y).
Mathematical expressions involving these quantities in vector calculus and tensor analysis (such as the gradient, divergence, curl, and Laplacian) can be transformed from one coordinate system to another, according to transformation rules for scalars, vectors, and tensors. Such expressions then become valid for any curvilinear coordinate system.
The divergence of the curl of any vector field (in three dimensions) is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.} If a vector field F with zero divergence is defined on a ball in R 3 , then there exists some vector field G on the ball with F = curl G .