Ad
related to: draw and explain cache memory
Search results
Results From The WOW.Com Content Network
Cache hierarchy, or multi-level cache, is a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores.
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. [1] A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations.
The resulting load on memory use is known as pressure (respectively register pressure, cache pressure, and (main) memory pressure). Terms for data being missing from a higher level and needing to be fetched from a lower level are, respectively: register spilling (due to register pressure : register to cache), cache miss (cache to main memory ...
Modern high performance CPU chip designs incorporate aspects of both Harvard and von Neumann architecture. In particular, the "split cache" version of the modified Harvard architecture is very common. CPU cache memory is divided into an instruction cache and a data cache. Harvard architecture is used as the CPU accesses the cache.
Diagram of a CPU memory cache operation. In computing, a cache (/ k æ ʃ / ⓘ KASH) [1] is a hardware or software component that stores data so that future requests for that data can be served faster; the data stored in a cache might be the result of an earlier computation or a copy of data stored elsewhere.
Most general purpose computers use a hybrid split-cache modified Harvard architecture that appears to an application program to have a pure Princeton architecture machine with gigabytes of virtual memory, but internally (for speed) it operates with an instruction cache physically separate from a data cache, more like the Harvard model. [1]
Cache placement policies are policies that determine where a particular memory block can be placed when it goes into a CPU cache.A block of memory cannot necessarily be placed at an arbitrary location in the cache; it may be restricted to a particular cache line or a set of cache lines [1] by the cache's placement policy.
These cache hits and misses contribute to the term average access time (AAT) also known as AMAT (average memory access time), which, as the name suggests, is the average time it takes to access the memory. This is one major metric for cache performance measurement, because this number becomes highly significant and critical as processor speed ...