Search results
Results From The WOW.Com Content Network
In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
Both of the above are derived from the following two equations that define a logarithm: (note that in this explanation, the variables of and may not be referring to the same number) log b ( y ) = x b x = y {\displaystyle \log _{b}(y)=x\iff b^{x}=y}
Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.
The least common denominator is when you use one of the denominators you are adding, the answer should be correct, the greatest common denominator, is not correct, and the greater it is, the further away it is from the truth, unless you take two further actions to correct the problem.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.