When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...

  4. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    Let () be a polynomial equation, where P is a univariate polynomial of degree n. If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial. For example, the equation

  5. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    For any given n ≥ 1, among the polynomials of degree n with leading coefficient 1 (monic polynomials): = is the one of which the maximal absolute value on the interval [−1, 1] is minimal. This maximal absolute value is: 1 2 n − 1 {\displaystyle {\frac {1}{2^{n-1}}}} and | f ( x ) | reaches this maximum exactly n + 1 times at: x = cos ...

  6. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    The numerator of the rational expression being integrated has degree at most n − 1 and the degree of the denominator is n + 1. Therefore, the number above tends to 0 as r → +∞. But the number is also equal to Nn and so N = n. Another complex-analytic proof can be given by combining linear algebra with the Cauchy theorem.

  7. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    (Note that it makes sense for such an equation to have a polynomial solution. Each term in the equation is a polynomial, and the degrees are consistent.) This is a Sturm–Liouville type of equation. Such equations generally have singularities in their solution functions f except for particular values of λ.

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...

  9. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases.