Search results
Results From The WOW.Com Content Network
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
In other words, the only functions that have "elementary antiderivatives" (that is, antiderivatives living in, at worst, an elementary differential extension of ) are those with this form. Thus, on an intuitive level, the theorem states that the only elementary antiderivatives are the "simple" functions plus a finite number of logarithms of ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The definite integral inputs a function and outputs a number, which gives the algebraic sum of areas between the graph of the input and the x-axis. The technical definition of the definite integral involves the limit of a sum of areas of rectangles, called a Riemann sum. [50]: 282 A motivating example is the distance traveled in a given time.
(Liouville's theorem). In other words, only functions whose indefinite integrals are elementary (i.e., at worst contained within the elementary differential extension of F) have the form stated in the theorem. Intuitively, only elementary indefinite integrals can be expressed as the sum of a finite number of logarithms of simple functions.
In addition, sometimes there exist relations with other special functions; a complicated special function can be expressed in terms of simpler functions. Various representations can be used for the evaluation; the simplest way to evaluate a function is to expand it into a Taylor series. However, such representation may converge slowly or not at ...
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.