When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.

  3. Green's function (many-body theory) - Wikipedia

    en.wikipedia.org/wiki/Green's_function_(many-body...

    In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...

  4. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation. There are many expansions in terms of special functions for the Green's function. In the case of a boundary put at infinity with the boundary condition ...

  5. d'Alembert operator - Wikipedia

    en.wikipedia.org/wiki/D'Alembert_operator

    The Green's function, (~ ~ ′), for the d'Alembertian is defined by the equation (~ ~ ′) = (~ ~ ′)where (~ ~ ′) is the multidimensional Dirac delta function ...

  6. Correlation function (quantum field theory) - Wikipedia

    en.wikipedia.org/wiki/Correlation_function...

    In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.

  7. Propagator - Wikipedia

    en.wikipedia.org/wiki/Propagator

    The scalar propagators are Green's functions for the Klein–Gordon equation. There are related singular functions which are important in quantum field theory. These functions are most simply defined in terms of the vacuum expectation value of products of field operators.

  8. Mehler kernel - Wikipedia

    en.wikipedia.org/wiki/Mehler_kernel

    In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.It provides the fundamental solution [3] φ(x,t) to

  9. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function. In such a context, this identity is the mathematical expression of the Huygens principle , and leads to Kirchhoff's diffraction formula and other approximations.