Ad
related to: equation directrix parabola
Search results
Results From The WOW.Com Content Network
A consequence is that the equation (in ,) of the parabola determined by 3 points = (,), =,,, with different x coordinates is (if two x coordinates are equal, there is no parabola with directrix parallel to the x axis, which passes through the points) =.
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The free term of a reduced quadratic equation is always the product of its solutions. Hence, if the tangents meet at (x 0, y 0) orthogonally, the following equations hold: = = The last equation is equivalent to =, which is the equation of the directrix.
The directrix has equation = . With = (,), the ... This is the equation of an ellipse (<) or a parabola (=) or a hyperbola (>). All of these non-degenerate conics ...
In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...
Parabola: the set of points equidistant from a fixed point (the focus) and a line (the directrix). Hyperbola: the set of points for each of which the absolute value of the difference between the distances to two given foci is a constant. Ellipse: the set of points for each of which the sum of the distances to two given foci is a constant
It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the parabola inscribed in the reference triangle having the Euler line as directrix and the triangle center X 110 as focus. [1]