When.com Web Search

  1. Ads

    related to: polynomial function word problem examples algebra 3 with answers chart

Search results

  1. Results From The WOW.Com Content Network
  2. Word problem (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Word_problem_(mathematics)

    The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...

  4. Word problem (mathematics education) - Wikipedia

    en.wikipedia.org/wiki/Word_problem_(mathematics...

    Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.

  5. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola.

  6. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    The term "algebraic equation" dates from the time when the main problem of algebra was to solve univariate polynomial equations. This problem was completely solved during the 19th century; see Fundamental theorem of algebra, Abel–Ruffini theorem and Galois theory. Since then, the scope of algebra has been dramatically enlarged.

  7. Multilinear polynomial - Wikipedia

    en.wikipedia.org/wiki/Multilinear_polynomial

    In algebra, a multilinear polynomial [1] is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 {\displaystyle 2} or higher; that is, each monomial is a constant times a product of distinct variables.

  8. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  9. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    The problem of determining if a given set of Wang tiles can tile the plane. The problem of determining the Kolmogorov complexity of a string. Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers.