When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    In such a theory, its speed would depend on its frequency, and the invariant speed c of special relativity would then be the upper limit of the speed of light in vacuum. [32] No variation of the speed of light with frequency has been observed in rigorous testing, putting stringent limits on the mass of the photon. [ 59 ]

  3. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    is frequency [2] This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant

  4. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    In a dispersive medium, the phase speed itself depends upon the frequency of the wave, making the relationship between wavelength and frequency nonlinear. In the case of electromagnetic radiation—such as light—in free space, the phase speed is the speed of light, about 3 × 10 8 m/s.

  5. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  6. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons . Each has an energy related to the frequency of the wave given by Planck's relation E = hf , where E is the energy of the photon, h is the Planck constant , 6.626 × 10 −34 J·s, and f is the frequency ...

  7. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The reduced Compton wavelength is a natural representation of mass on the quantum scale and is used in equations that pertain to inertial mass, such as the Klein–Gordon and Schrödinger's equations. [2]: 18–22 Equations that pertain to the wavelengths of photons interacting with mass use the non-reduced Compton wavelength.

  8. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.

  9. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    The speed of light in vacuum is defined to be exactly 299 792 458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum.