When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a "rank-1 update" to a matrix whose inverse has previously been computed. [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)).

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  4. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The sum of the entries along the main diagonal (the trace), plus one, equals 44(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =

  8. Partial inverse of a matrix - Wikipedia

    en.wikipedia.org/wiki/Partial_inverse_of_a_matrix

    Use of the partial inverse in numerical analysis is due to the fact that there is some flexibility in the choices of pivots, allowing for non-invertible elements to be avoided, and because the operation of rotation (of the graph of the pivoted matrix) has better numerical stability than the shearing operation which is implicitly performed by ...

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Suppose X and Y in the Lie algebra are given. Their exponentials, exp(X) and exp(Y), are rotation matrices, which can be multiplied. Since the exponential map is a surjection, for some Z in the Lie algebra, exp(Z) = exp(X) exp(Y), and one may tentatively write = (,), for C some expression in X and Y.