When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  3. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  5. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    Note the projection of v along dl and curl of v may be in the negative sense, reducing the circulation. In physics, circulation is the line integral of a vector field around a closed curve embedded in the field. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field.

  6. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.

  7. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    Although the magnetic field, , is a pseudovector (also called axial vector), the vector potential, , is a polar vector. [6] This means that if the right-hand rule for cross products were replaced with a left-hand rule, but without changing any other equations or definitions, then B {\displaystyle \mathbf {B} } would switch signs, but A would ...

  8. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  9. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .