When.com Web Search

  1. Ads

    related to: logistic regression detailed overview calculator excel formula examples

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The basic idea of logistic regression is to use the mechanism already developed for linear regression by modeling the probability p i using a linear predictor function, i.e. a linear combination of the explanatory variables and a set of regression coefficients that are specific to the model at hand but the same for all trials.

  3. MedCalc - Wikipedia

    en.wikipedia.org/wiki/MedCalc

    [2] [3] [4] It has an integrated spreadsheet for data input and can import files in several formats (Excel, SPSS, CSV, ...). MedCalc includes basic parametric and non-parametric statistical procedures and graphs such as descriptive statistics , ANOVA , Mann–Whitney test , Wilcoxon test , χ 2 test , correlation , linear as well as non-linear ...

  4. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Additionally, data should always be categorical. Continuous data can first be converted to categorical data, with some loss of information. With both continuous and categorical data, it would be best to use logistic regression. (Any data that is analysed with log-linear analysis can also be analysed with logistic regression.

  5. Logistic equation - Wikipedia

    en.wikipedia.org/wiki/Logistic_equation

    Logistic equation can refer to: Logistic function, a common S-shaped equation and curve with applications in a wide range of fields. Logistic map, a nonlinear recurrence relation that plays a prominent role in chaos theory; Logistic regression, a regression technique that transforms the dependent variable using the logistic function

  6. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The softmax function thus serves as the equivalent of the logistic function in binary logistic regression. Note that not all of the vectors of coefficients are uniquely identifiable. This is due to the fact that all probabilities must sum to 1, making one of them completely determined once all the rest are known.

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).

  8. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  9. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    Poisson regression for contingency tables, a type of generalized linear model. The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X, or more immediately, the transformed quantities f i (X) in the range −∞ to +∞.