Ad
related to: mosfet structure and characteristics
Search results
Results From The WOW.Com Content Network
The MOS capacitor structure is the heart of the MOSFET. Consider a MOS capacitor where the silicon base is of p-type. If a positive voltage is applied at the gate, holes which are at the surface of the p-type substrate will be repelled by the electric field generated by the voltage applied.
A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices , such as an insulated-gate bipolar transistor (IGBT) or a thyristor , its main advantages are high switching speed and good efficiency at low voltages.
The DGMOSFET (dual-gate MOSFET) or DGMOS, a MOSFET with two insulated gates. The IGBT (insulated-gate bipolar transistor) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200–3000 V drain-to-source voltage range of operation.
In a depletion-mode MOSFET, the device is normally on at zero gate–source voltage. Such devices are used as load "resistors" in logic circuits (in depletion-load NMOS logic, for example). For N-type depletion-load devices, the threshold voltage might be about −3 V, so it could be turned off by pulling the gate 3 V negative (the drain, by ...
FlexFET is a planar, independently double-gated transistor with a damascene metal top gate MOSFET and an implanted JFET bottom gate that are self-aligned in a gate trench. . This device is highly scalable due to its sub-lithographic channel length; non-implanted ultra-shallow source and drain extensions; non-epi raised source and drain regions; and gate-last fl
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
A metal–oxide–semiconductor structure is critical part of a MOSFET, controlling the height of potential barrier in the channel via the gate oxide. An n-channel MOSFET's operation can be divided into three regions, shown below and corresponding to the right figure.
The VMOS structure has a V-groove at the gate region. A VMOS (/ ˈ v iː m ɒ s /) (vertical metal oxide semiconductor or V-groove MOS) transistor is a type of metal–oxide–semiconductor field-effect transistor . VMOS is also used to describe the V-groove shape vertically cut into the substrate material. [1]