Search results
Results From The WOW.Com Content Network
Call by reference (or pass by reference) is an evaluation strategy where a parameter is bound to an implicit reference to the variable used as argument, rather than a copy of its value. This typically means that the function can modify (i.e., assign to) the variable used as argument—something that will be seen by its caller. Call by reference ...
Even when function arguments are passed using "call by value" semantics (which is always the case in Java, and is the case by default in C#), a value of a reference type is intrinsically a reference; so if a parameter belongs to a reference type, the resulting behavior bears some resemblance to "call by reference" semantics.
In C# and Java, variadic arguments are simply collected in an array. Caller can explicitly pass in an array in place of the variadic arguments. This can only be done for a variadic parameter. It is not possible to apply an array of arguments to non-variadic parameter without using reflection.
The specification for pass-by-reference or pass-by-value would be made in the function declaration and/or definition. Parameters appear in procedure definitions; arguments appear in procedure calls. In the function definition f(x) = x*x the variable x is a parameter; in the function call f(2) the value 2 is the argument of the function. Loosely ...
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
In Python, functions are first-class objects, just like strings, numbers, lists etc. This feature eliminates the need to write a function object in many cases. Any object with a __call__() method can be called using function-call syntax. An example is this accumulator class (based on Paul Graham's study on programming language syntax and ...
Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, [1] dBASE dBL [clarification needed], and C) and object-oriented programming languages (such as C++, C#, and D). [2]
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.