Search results
Results From The WOW.Com Content Network
MRI, in general, has better spatial resolution than EEG and MEG, but not as good a resolution as invasive procedures such as single-unit electrodes. While typical resolutions are in the millimeter range, ultra-high-resolution MRI or MR spectroscopy works at a resolution of tens of micrometers.
[1] [2] Functional MRI has several benefits, such as its non-invasive quality, relatively high spatial resolution, and decent temporal resolution. This is due the influential development in the scanner hardware, where it now allows for technicians to retrieve higher resolution images in a shorter amount of time.
Often there is a trade-off between the temporal resolution of a measurement and its spatial resolution, due to Heisenberg's uncertainty principle.In some contexts, such as particle physics, this trade-off can be attributed to the finite speed of light and the fact that it takes a certain period of time for the photons carrying information to reach the observer.
MRI has the advantages of having very high spatial resolution and is very adept at morphological imaging and functional imaging. MRI does have several disadvantages though. First, MRI has a sensitivity of around 10 −3 mol/L to 10 −5 mol/L, which, compared to other types of imaging, can be very limiting. This problem stems from the fact that ...
Different methods have different advantages for research; for instance, MEG measures brain activity with high temporal resolution (down to the millisecond level), but is limited in its ability to localize that activity. fMRI does a much better job of localizing brain activity for spatial resolution, but with a much lower time resolution [1 ...
Single-voxel spectroscopy requires shorter acquisition times; therefore it is more suitable for fMRS studies where high temporal resolution is needed and where the volume of interest is known. Multi-voxel spectroscopy provides information about group of voxels and data can be presented in 2D or 3D images, but it requires longer acquisition ...
Most recently, highly undersampled radial FLASH MRI acquisitions have been combined with an iterative image reconstruction by regularized nonlinear inversion to achieve real-time MRI at a temporal resolution of 20 to 30 milliseconds for images with a spatial resolution of 1.5 to 2.0 millimeters. [4]
When comparing and contrasting neuroimaging devices it is important to look at the temporal resolution, spatial resolution, and the degree of immobility. In particular, EEG (electroencephalograph) and MEG (magnetoencephalography) have high temporal resolution, but a low spatial resolution. EEG also has a higher degree of mobility than MEG has.