Search results
Results From The WOW.Com Content Network
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
In computer science, an output-sensitive algorithm is an algorithm whose running time depends on the size of the output, instead of, or in addition to, the size of the input. For certain problems where the output size varies widely, for example from linear in the size of the input to quadratic in the size of the input, analyses that take the ...
The complexity class PCP c(n), s(n) [r(n), q(n)] is the class of all decision problems having probabilistically checkable proof systems over binary alphabet of completeness c(n) and soundness s(n), where the verifier is nonadaptive, runs in polynomial time, and it has randomness complexity r(n) and query complexity q(n).
A complexity class is a set of problems of related complexity. Simpler complexity classes are defined by the following factors: The type of computational problem: The most commonly used problems are decision problems. However, complexity classes can be defined based on function problems, counting problems, optimization problems, promise ...
Algorithmic complexity may refer to: In algorithmic information theory , the complexity of a particular string in terms of all algorithms that generate it. Solomonoff–Kolmogorov–Chaitin complexity , the most widely used such measure.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
Analysis of algorithms, typically using concepts like time complexity, can be used to get an estimate of the running time as a function of the size of the input data. The result is normally expressed using Big O notation. This is useful for comparing algorithms, especially when a large amount of data is to be processed.