Search results
Results From The WOW.Com Content Network
The Hosmer–Lemeshow test is a statistical test for goodness of fit and calibration for logistic regression models. It is used frequently in risk prediction models. The test assesses whether or not the observed event rates match expected event rates in subgroups of the model population.
F = the cumulative distribution function for the probability distribution being tested. Y u = the upper limit for bin i, Y l = the lower limit for bin i, and; N = the sample size; The resulting value can be compared with a chi-square distribution to determine the goodness of fit.
The and coefficients may be entered into the logistic regression equation to estimate the probability of passing the exam. For example, for a student who studies 2 hours, entering the value = into the equation gives the estimated probability of passing the exam of 0.25:
Now, for (1) to reject H 0 with a probability of at least 1 − β when H a is true (i.e. a power of 1 − β), and (2) reject H 0 with probability α when H 0 is true, the following is necessary: If z α is the upper α percentage point of the standard normal distribution, then
Then, under the null hypothesis that M 2 is the true model, the difference between the deviances for the two models follows, based on Wilks' theorem, an approximate chi-squared distribution with k-degrees of freedom. [5] This can be used for hypothesis testing on the deviance. Some usage of the term "deviance" can be confusing. According to ...
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .
The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers , so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics ).