When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Minkowski distance - Wikipedia

    en.wikipedia.org/wiki/Minkowski_distance

    The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance. It is named after the Polish mathematician Hermann Minkowski .

  3. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    The Minkowski metric η is the metric tensor of Minkowski space. It is a pseudo-Euclidean metric, or more generally, a constant pseudo-Riemannian metric in Cartesian coordinates. As such, it is a nondegenerate symmetric bilinear form, a type (0, 2) tensor.

  4. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime , being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

  5. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    One way of solving the field equations is to make an approximation, namely, that far from the source(s) of gravitating matter, the gravitational field is very weak and the spacetime approximates that of Minkowski space. The metric is then written as the sum of the Minkowski metric and a term representing the deviation of the true metric from ...

  6. d'Alembert operator - Wikipedia

    en.wikipedia.org/wiki/D'Alembert_operator

    (Some authors alternatively use the negative metric signature of (− + + +), with =, = = =.) Lorentz transformations leave the Minkowski metric invariant, so the d'Alembertian yields a Lorentz scalar. The above coordinate expressions remain valid for the standard coordinates in every inertial frame.

  7. Minkowski–Bouligand dimension - Wikipedia

    en.wikipedia.org/wiki/Minkowski–Bouligand...

    Estimating the box-counting dimension of the coast of Great Britain. In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a bounded set in a Euclidean space, or more generally in a metric space (,).

  8. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    Divergence is a vector operator that produces a signed scalar field giving the quantity of a vector field's source at each point. Note that in this metric signature [+,−,−,−] the 4-Gradient has a negative spatial component.

  9. Poincaré group - Wikipedia

    en.wikipedia.org/wiki/Poincaré_group

    The Poincaré group, named after Henri Poincaré (1905), [1] was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. [2] [3] It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.