Search results
Results From The WOW.Com Content Network
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test). A typical example of the repeated measures t -test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again ...
For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples"). The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed.
Some tests perform univariate analysis on a single sample with a single variable. Others compare two or more paired or unpaired samples. Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like ...
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
You are confronted with the three apples in pairs without the benefit of a sensitive scale. Therefore, when presented A and B alone, you are indifferent between apple A and apple B; and you are indifferent between apple B and apple C when presented B and C alone. However, when the pair A and C are shown, you prefer C over A.
For example, paired data can arise from measuring a single set of individuals at different points in time. [1] A clinical trial might record the blood pressure in a set of n patients before and after administering a medicine. In this case, the "before" and "after" data sets are paired, as each patient has a "before" measurement and an "after ...