Search results
Results From The WOW.Com Content Network
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum through a process called co-translational translocation.
The cytoplasm, the cytoplasmic membrane and the cell wall are subcellular localizations, whereas the extracellular environment is clearly not. Most Gram-negative bacteria also contain an outer membrane and periplasmic space. Unlike eukaryotes, most bacteria contain no membrane-bound organelles, however there are some exceptions (i.e ...
The scanning mechanism of initiation, which utilizes the Kozak sequence, is found only in eukaryotes and has significant differences from the way bacteria initiate translation. The biggest difference is the existence of the Shine-Dalgarno (SD) sequence in mRNA for bacteria. The SD sequence is located near the start codon which is in contrast to ...
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes. Eukaryotic elongation factor 2 (eEF2) is a regulateable GTP -dependent translocase that moves nascent polypeptide chains from the A-site to the P-site in the ribosome.
Since the cell wall is required for bacterial survival, but is absent in some eukaryotes, several antibiotics (notably the penicillins and cephalosporins) stop bacterial infections by interfering with cell wall synthesis, while having no effects on human cells which have no cell wall, only a cell membrane.