Search results
Results From The WOW.Com Content Network
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Terms with infinitely many sine factors would necessarily be equal to zero. When only finitely many of the angles are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish. Furthermore, in each term all but finitely many of the cosine factors are unity.
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in triangulation , a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
The law of sines (also known as the "sine rule") for an arbitrary triangle states: [85] = = = =, where is the area of the triangle and R is the radius of the circumscribed circle of the triangle:
The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then =, and the law of cosines reduces to = +. The law of cosines is useful for solving a triangle when all three sides or two sides and their included angle are given.