Search results
Results From The WOW.Com Content Network
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
English: All of the six trigonometric functions of an arbitrary angle θ can be defined geometrically in terms of a unit circle centred at the origin of a Cartesian coordinate plane.
A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus.
English: A unit circle with sine (sin), cosine (cos), tangent (tan), cotangent (cot), versine (versin), coversine (cvs), exsecant (exsec), excosecant (excsc) and (indirectly) also secant (sec), cosecant (csc) as well as chord (crd) and arc labeled as trigonometric functions of angle theta. It is designed as alternative construction to "Circle ...
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them.
English: This file was made to help understand rotation about the center of a unit circle according to the term used. On the left hand side, the clockwise rotation is displayed with key values: 0° rightward, -90° downward, -180° leftward, -270° upward, and -360° rightward again, making a full turn.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
For the group on the unit circle, the appropriate subgroup is the subgroup of points of the form (w, x, 1, 0), with + =, and its identity element is (1, 0, 1, 0). The unit hyperbola group corresponds to points of form (1, 0, y, z), with =, and the identity is again (1, 0, 1, 0). (Of course, since they are subgroups of the larger group, they ...