When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    [nb 2] For instance rounding 9.46 to one decimal gives 9.5, and then 10 when rounding to integer using rounding half to even, but would give 9 when rounded to integer directly. Borman and Chatfield [15] discuss the implications of double rounding when comparing data rounded to one decimal place to specification limits expressed using integers.

  3. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.

  4. Template:Rounddown - Wikipedia

    en.wikipedia.org/wiki/Template:Rounddown

    {{Rounddown|value|decimals}} Both parameters can be any valid numeric expression; however, decimals should be an integer. The decimals parameter defaults to 0. decimals can be negative to round down to a multiple of a power of ten. NAN may be returned if very large values are used.

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    This is the default rounding method implied in many disciplines [citation needed] if the required rounding method is not specified. Round half to even, which rounds to the nearest even number. With this method, 1.25 is rounded down to 1.2. If this method applies to 1.35, then it is rounded up to 1.4.

  8. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    This rounding rule is more accurate but more computationally expensive. Rounding so that the last stored digit is even when there is a tie ensures that it is not rounded up or down systematically. This is to try to avoid the possibility of an unwanted slow drift in long calculations due simply to a biased rounding.

  9. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values. For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point ...