Search results
Results From The WOW.Com Content Network
Where n is the total number of scores, and t i is the number of scores in the ith sample. The approximation to the standard normal distribution can be improved by the use of a continuity correction: S c = |S| – 1. Thus 1 is subtracted from a positive S value and 1 is added to a negative S value. The z-score equivalent is then given by
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom.Let , = be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two means will not be found if the population means are equal.
In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.
Computations or tables of the Wilks' distribution for higher dimensions are not readily available and one usually resorts to approximations. One approximation is attributed to M. S. Bartlett and works for large m [2] allows Wilks' lambda to be approximated with a chi-squared distribution
From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...
Dunnett's test is performed by computing a Student's t-statistic for each experimental, or treatment, group where the statistic compares the treatment group to a single control group. [8] [9] Since each comparison has the same control in common, the procedure incorporates the dependencies between these comparisons. In particular, the t ...
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
Bartlett's test is used to test the null hypothesis, H 0 that all k population variances are equal against the alternative that at least two are different. If there are k samples with sizes and sample variances then Bartlett's test statistic is