Search results
Results From The WOW.Com Content Network
The Lincoln index is a statistical measure used in several fields to estimate the population size of an animal species. Described by Frederick Charles Lincoln in 1930, it is also sometimes known as the Lincoln-Petersen method after C.G. Johannes Petersen who was the first to use the related mark and recapture method.
For instance, if estimating the effect of a drug on blood pressure with a 95% confidence interval that is six units wide, and the known standard deviation of blood pressure in the population is 15, the required sample size would be =, which would be rounded up to 97, since sample sizes must be integers and must meet or exceed the calculated ...
Mark and recapture is a method commonly used in ecology to estimate an animal population's size where it is impractical to count every individual. [1] A portion of the population is captured, marked, and released. Later, another portion will be captured and the number of marked individuals within the sample is counted.
In sampling theory, the sampling fraction is the ratio of sample size to population size or, in the context of stratified sampling, the ratio of the sample size to the size of the stratum. [1] The formula for the sampling fraction is =, where n is the sample size and N is the population size. A sampling fraction value close to 1 will occur if ...
where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible.
A related quantity is the effective sample size ratio, which can be calculated by simply taking the inverse of (i.e., =). For example, let the design effect, for estimating the population mean based on some sampling design, be 2.
In population genetics and population ecology, population size (usually denoted N) is a countable quantity representing the number of individual organisms in a population. Population size is directly associated with amount of genetic drift , and is the underlying cause of effects like population bottlenecks and the founder effect . [ 1 ]
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: