Search results
Results From The WOW.Com Content Network
At the very 3'-end of the telomere there is a 300 base pair overhang which can invade the double-stranded portion of the telomere forming a structure known as a T-loop. This loop is analogous to a knot, which stabilizes the telomere, and prevents the telomere ends from being recognized as breakpoints by the DNA repair machinery.
A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring chromosomes. The fruit fly Drosophila melanogaster lacks telomerase, but instead uses retrotransposons to maintain telomeres. [2]
n/a Ensembl ENSG00000277925 n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) Chr 3: 169.76 – 169.77 Mb n/a PubMed search n/a Wikidata View/Edit Human RNA family Vertebrate telomerase RNA Identifiers Symbol Telomerase-vert Rfam RF00024 Other data RNA type Gene Domain(s) Eukaryote ; Virus PDB structures PDBe RNA family Ciliate telomerase RNA Identifiers Symbol ...
Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase. Telomerase is a specialized DNA polymerase that consists of multiple protein subunits and an RNA component.
Repeated sequences (also known as repetitive elements, repeating units or repeats) are short or long patterns that occur in multiple copies throughout the genome.In many organisms, a significant fraction of the genomic DNA is repetitive, with over two-thirds of the sequence consisting of repetitive elements in humans. [1]
Shelterin (also called telosome) is a protein complex known to protect telomeres in many eukaryotes from DNA repair mechanisms, as well as to regulate telomerase activity. In mammals and other vertebrates, telomeric DNA consists of repeating double-stranded 5'-TTAGGG-3' (G-strand) sequences (2-15 kilobases in humans) along with the 3'-AATCCC-5' (C-strand) complement, ending with a 50-400 ...
This problem makes eukaryotic cells unable to copy the last few bases on the 3' end of the template DNA strand, leading to chromosome—and, therefore, telomere—shortening every S phase. [2] Measurements of telomere lengths across cell types at various ages suggest that this gradual chromosome shortening results in a gradual reduction in ...
Sgo2 remains in subtelomeres, whose cells lack telomere DNA. Sgo2 represses the expression of subtelomeric genes that is in a different pass-way from the H3K9me3- Swi6-mediated heterochromatin. Sgo2 has also repressive effects for timing of subtelomeres replication by suppressing Sld3, [25] a replication factor, at the start of the replication ...