Search results
Results From The WOW.Com Content Network
The 3 dB bandwidth of an electronic filter or communication channel is the part of the system's frequency response that lies within 3 dB of the response at its peak, which, in the passband filter case, is typically at or near its center frequency, and in the low-pass filter is at or near its cutoff frequency. If the maximum gain is 0 dB, the 3 ...
The 2-sided bandwidth relative to a resonant frequency of F 0 (Hz) is F 0 /Q. For example, an antenna tuned to have a Q value of 10 and a centre frequency of 100 kHz would have a 3 dB bandwidth of 10 kHz. In audio, bandwidth is often expressed in terms of octaves. Then the relationship between Q and bandwidth is
The OSNR is the ratio between the signal power and the noise power in a given bandwidth. Most commonly a reference bandwidth of 0.1 nm is used. This bandwidth is independent of the modulation format, the frequency and the receiver. For instance an OSNR of 20 dB/0.1 nm could be given, even the signal of 40 GBit DPSK would not fit in this bandwidth.
For transistors, the current-gain–bandwidth product is known as the f T or transition frequency. [4] [5] It is calculated from the low-frequency (a few kilohertz) current gain under specified test conditions, and the cutoff frequency at which the current gain drops by 3 decibels (70% amplitude); the product of these two values can be thought of as the frequency at which the current gain ...
When instead, the frequency range is (A, A+B), for some A > B, it is called bandpass, and a common desire (for various reasons) is to convert it to baseband. One way to do that is frequency-mixing the bandpass function down to the frequency range (0, B). One of the possible reasons is to reduce the Nyquist rate for more efficient storage.
where is the pulse frequency (in pulses per second) and is the bandwidth (in hertz). The quantity later came to be called the Nyquist rate, and transmitting at the limiting pulse rate of pulses per second as signalling at the Nyquist rate. Nyquist published his results in 1928 as part of his paper "Certain topics in Telegraph Transmission Theory".
In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y -axis which are half the maximum amplitude.
In 1946, Robert H. Dicke elaborated on the relationship, [19] and further connected it to properties of antennas, particularly the fact that the average antenna aperture over all different directions cannot be larger than , where λ is wavelength. This comes from the different frequency dependence of 3D versus 1D Planck's law.